» 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

definição - SQUAMATA

Squamata (n.)

1.diapsid reptiles: snakes and lizards

   Publicidade ▼

Merriam Webster

Squamata‖Squa*ma"ta (skwȧ*mā"tȧ), n. pl. [NL., fr. L. squamatus scaly.] (Zoöl.) A division of edentates having the body covered with large, imbricated horny scales. It includes the pangolins.

   Publicidade ▼

definiciones (más)

definição - Wikipedia

sinónimos - SQUAMATA

Squamata (n.)

order Squamata

locuções

dicionario analógico

Wikipedia

Squamata

                   
Scaled reptiles
Temporal range: Early Jurassic-recent, 199–0 Ma
Possible Late Triassic record.
Pg
Eastern blue-tongued lizard
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Superclass: Tetrapoda
Class: Reptilia
Subclass: Diapsida
Superorder: Lepidosauria
Order: Squamata
Oppel, 1811
Suborders

see text

black: range of Squamata

Squamata, or the scaled reptiles, is the largest recent order of reptiles, including lizards and snakes. Members of the order are distinguished by their skins, which bear horny scales or shields. They also possess movable quadrate bones, making it possible to move the upper jaw relative to the braincase. This is particularly visible in snakes, which are able to open their mouths very wide to accommodate comparatively large prey. They are the most variably-sized order of reptiles, ranging from the 16-millimetre (0.63 in) dwarf gecko (Sphaerodactylus ariasae) to the 6.6-metre (22 ft) green anaconda (Eunectes murinus) and the now-extinct mosasaurs, which reached lengths of 14 metres (46 ft).

Contents

  Evolution

  Slavoia darevskii, a fossil squamate

Squamates are a monophyletic sister group to the tuatara. The squamates and tuatara together are a sister group to crocodiles and birds, the extant archosaurs. Squamate fossils first appear in the middle Jurassic period, but a mitochondrial phylogeny suggests they evolved in the late Permian. The evolutionary relationships within the squamates are not yet completely worked out, with the relationship of snakes to other groups being most problematic. From morphological data, iguanid lizards have been thought to have diverged from other squamates very early, but recent molecular phylogenies, both from mitochondrial and nuclear DNA, do not support this early divergence.[1] Because snakes have a faster molecular clock than other squamates,[1] and there are few early snake and snake ancestor fossils,[2] it is difficult to resolve the relationship between snakes and other squamate groups.

  Reproduction

  Trachylepis maculilabris skinks mating

The male members of the group Squamata have a hemipenis. Hemipenes are usually held inverted, within the body, and are everted for reproduction via erectile tissue like that in the human penis.[3] Only one is used at a time, and some evidence indicates males alternate use between copulations. The hemipenis itself has a variety of shapes, depending on species. Often it bears spines or hooks, to anchor the male within the female. Some species even have forked hemipenes (each hemipenis has two tips). Due to being everted and inverted, hemipenes do not have a completely enclosed channel for the conduction of sperm, but rather a seminal groove which seals as the erectile tissue expands. This is also the only reptile group in which can be found both viviparous and ovoviviparous species, as well as the usual oviparous reptiles. Some species, such as the komodo dragon, can actually reproduce asexually and undergo parthenogenesis.[4]

  Evolution of venom

Recent research suggests the evolutionary origin of venom may exist deep in the squamate phylogeny, with 60% of squamates placed in this hypothetical group called Toxicofera. Venom has been known in the families Caenophidia, Anguimorpha, and Iguania, and has been shown to have evolved a single time along these lineages before the three families diverged, because all lineages share nine common toxins.[5] The fossil record shows the divergence between anguimorphs, iguanians, and advanced snakes dates back roughly 200 Mya to the Late Triassic/Early Jurassic.[5]

Snake venom has been shown to have evolved via a process by which a gene encoding for a normal body protein, typically one involved in key regulatory processes or bioactivity, is duplicated, and the copy is selectively expressed in the venom gland.[6] Previous literature hypothesized venoms were modifications of salivary or pancreatic proteins,[7] but it has been discovered that different toxins have been recruited from numerous different protein bodies and are diverse as the functions themselves.[8]

Natural selection has driven the origination and diversification of the toxins to counter the defenses of their prey. Once toxins have been recruited into the venom proteome, they form large multigene families and evolve via the birth-and-death model of protein evolution,[9] which leads to a diversification of toxins that allows the sit-and-wait predators the ability to attack a wide range of prey.[10] It has been hypothesized that the rapid evolution and diversification is the result of a prey/predator arms race where both are adapting to counter the other.[11]

  Humans and squamates

  Bites and fatalities

  Map showing the global distribution of snakebite morbidity

An estimated 125,000 people a year die from venomous snake bites.[12] In the US alone, more than 8,000 venomous snake bites are reported each year.[13] In addition, large pet constrictors, such as boas and pythons, have been known to kill humans through constriction on rare occasions.[14]

Lizard bites, unlike venomous snake bites, are not fatal. The komodo dragon has been known to kill people due to its size, and recent studies show it may have a passive envenomation system. Recent studies also show the close relatives of the komodo, the monitor lizards, all have a similar envenomation system, but the toxicity of the bites is relatively low to humans.[15]

  Conservation

Though they survived the worst changes in Earth's history, many squamate species are endangered now due to habitat loss, hunting and poaching, the pet trade, alien species being introduced to their habitats (which puts native creatures at risk through competition, disease, and predation), and many other unnecessary reasons. Because of this, some are in fact extinct, with Africa having the most extinct species of squamates. However, breeding programs and wildlife parks are trying to save many endangered reptiles from extinction. Many zoos and breeders educate people about the importance of snakes and lizards.

  Classification

  Desert iguana from Amboy Crater, Mojave Desert, California

Classically, the order is divided into three suborders:

Of these, the lizards form a paraphyletic group (since "lizards" excludes the subclade of snakes). In newer classifications, the name Sauria is used for reptiles and birds in general, and the Squamata are divided differently:

The relationships between these suborders is not yet certain, though recent research[16] suggests several families may form a hypothetical venom clade which encompasses a majority (nearly 60%) of squamate species. Named Toxicofera, it combines the following groups from traditional classification[16]:

  • Suborder Serpentes (snakes)
  • Suborder Iguania (agamids, chameleons, iguanids, etc.)
  • Infraorder Anguimorpha, consisting of:
    • Family Varanidae (monitor lizards, including the komodo dragon)
    • Family Anguidae (alligator lizards, glass lizards, etc.)
    • Family Helodermatidae (Gila monster and Mexican beaded lizard)

  List of extant families

Amphisbaenia
Family Common Names Example Species Example Photo
Amphisbaenidae
Gray, 1865
Tropical worm lizards Darwin's worm lizard (Amphisbaena darwinii) -
Bipedidae
Taylor, 1951
Bipes worm lizards Mexican mole lizard (Bipes biporus) Bipes biporus.jpg
Rhineuridae
Vanzolini, 1951
North American worm lizards North American worm lizard (Rhineura floridana) Amphisbaenia 1.jpg
Trogonophidae
Gray, 1865
Palearctic worm lizards Checkerboard worm lizard (Trogonophis wiegmanni) -
Anguidea or Diploglossa
Family Common Names Example Species Example Photo
Anguidae
Oppel, 1811
Glass lizards, alligator lizards and slow worms Slow worm (Anguis fragilis) Anguidae.jpg
Anniellidae
Gray, 1852
American legless lizards California legless lizard (Anniella pulchra) Anniella pulchra.jpg
Xenosauridae
Cope, 1866
Knob-scaled lizards Chinese crocodile lizard (Shinisaurus crocodilurus) Chin-krokodilschwanzechse-01.jpg
Gekkota
Family Common Names Example Species Example Photo
Dibamidae
Boulenger, 1884
Blind lizards Dibamus nicobaricum -
Gekkonidae
Gray, 1825
Geckos Thick-tailed gecko (Underwoodisaurus milii) Underwoodisaurus milii.jpg
Pygopodidae
Boulenger, 1884
Legless lizards Burton's snake lizard (Lialis burtonis) Lialis burtonis.jpg
Iguania
Family Common Names Example Species Example Photo
Agamidae
Spix, 1825
Agamas Eastern bearded dragon (Pogona barbata) Bearded dragon04.jpg
Chamaeleonidae
Gray, 1825
Chameleons Veiled chameleon (Chamaeleo calyptratus) Chamaelio calyptratus.jpg
Corytophanidae
Frost & Etheridge, 1989
Casquehead lizards Plumed basilisk (Basiliscus plumifrons) Plumedbasiliskcele4 edit.jpg
Crotaphytidae
Frost & Etheridge, 1989
Collared and leopard lizards Common collared lizard (Crotaphytus collaris) Collared lizard in Zion National Park.jpg
Hoplocercidae
Frost & Etheridge, 1989
Wood lizards or clubtails Club-tail iguana (Hoplocercus spinosus) -
Iguanidae Iguanas Marine iguana (Amblyrhynchus cristatus) Marineiguana03.jpg
Leiosauridae
Frost et al., 2001
- Darwin's iguana (Diplolaemus darwinii) -
Liolaemidae
Frost & Etheridge, 1989
Swifts Shining tree iguana (Liolaemus nitidus) Atacama lizard1.jpg
Opluridae
Frost & Etheridge, 1989
Madagascan iguanas Chalarodon (Chalarodon madagascariensis) -
Phrynosomatidae
Frost & Etheridge, 1989
Earless, spiny, tree, side-blotched and horned lizards Greater earless lizard (Cophosaurus texanus) Reptile tx usa.jpg
Polychrotidae
Frost & Etheridge, 1989
Anoles Carolina anole (Anolis carolinensis) Anolis carolinensis.jpg
Tropiduridae
Frost & Etheridge, 1989
Neotropical ground lizards (Microlophus peruvianus) Mperuvianus.jpg
Platynota or Varanoidea
Family Common Names Example Species Example Photo
Helodermatidae Gila monsters Gila monster (Heloderma suspectum) Gila.monster.arp.jpg
Lanthanotidae Earless monitor Earless monitor (Lanthanotus borneensis) -
Varanidae Monitor lizards Perentie (Varanus giganteus) Perentie Lizard Perth Zoo SMC Spet 2005.jpg
Scincomorpha
Family Common Names Example Species Example Photo
Cordylidae Spinytail lizards Girdle-tailed lizard (Cordylus warreni) Cordylus breyeri1.jpg
Gerrhosauridae Plated lizards Sudan plated lizard (Gerrhosaurus major) Gerrhosaurus major.jpg
Gymnophthalmidae Spectacled lizards Bachia bicolor Bachia bicolor.jpg
Lacertidae
Oppel, 1811
Wall or true lizards Ocellated lizard (Lacerta lepida) Perleidechse-20.jpg
Scincidae
Oppel, 1811
Skinks Western blue-tongued skink (Tiliqua occipitalis) Tiliqua occipitalis.jpg
Teiidae Tegus or whiptails Gold tegu (Tupinambis teguixin) Goldteju Tupinambis teguixin.jpg
Xantusiidae Night lizards Granite night lizard (Xantusia henshawi) Xantusia henshawi.jpg
Alethinophidia
Family Common Names Example Species Example Photo
Acrochordidae
Bonaparte, 1831[17]
File snakes Marine file snake (Acrochordus granulatus) Wart snake 1.jpg
Aniliidae
Stejneger, 1907[18]
Coral pipe snakes Burrowing false coral (Anilius scytale)
Anomochilidae
Cundall, Wallach and Rossman, 1993.[19]
Dwarf pipe snakes Leonard's pipe snake, (Anomochilus leonardi)
Atractaspididae
Günther, 1858[20]
Mole vipers Bibron's burrowing asp (Atractaspis bibroni)
Boidae
Gray, 1825[17]
Boas Amazon tree boa (Corallus hortulanus) Corallushortulanus.GIF
Bolyeriidae
Hoffstetter, 1946
Round Island boas Round Island burrowing boa (Bolyeria multocarinata)
Colubridae
Oppel, 1811[17]
Colubrids Grass snake (Natrix natrix) Natrix natrix (Marek Szczepanek).jpg
Cylindrophiidae
Fitzinger, 1843
Asian pipe snakes Red-tailed pipe snake (Cylindrophis ruffus) Cylindrophis rufus.jpg
Elapidae
Boie, 1827[17]
Cobras, coral snakes, mambas, kraits, sea snakes, sea kraits, Australian elapids King cobra (Ophiophagus hannah) Ophiophagus hannah2.jpg
Loxocemidae
Cope, 1861
Mexican burrowing snakes Mexican burrowing snake (Loxocemus bicolor) Loxocemus bicolor.jpg
Pythonidae
Fitzinger, 1826
Pythons Ball python (Python regius) Ball python lucy.JPG
Tropidophiidae
Brongersma, 1951
Dwarf boas Northern eyelash boa (Trachyboa boulengeri)
Uropeltidae
Müller, 1832
Shield-tailed snakes, short-tailed snakes Cuvier's shieldtail (Uropeltis ceylanica) Silybura shortii.jpg
Viperidae
Oppel, 1811[17]
Vipers, pitvipers, rattlesnakes European asp (Vipera aspis)
Xenopeltidae
Bonaparte, 1845
Sunbeam snakes Sunbeam snake (Xenopeltis unicolor) XenopeltisUnicolorRooij.jpg
Scolecophidia
Family Common Names Example Species Example Photo
Anomalepidae
Taylor, 1939[17]
Dawn blind snakes Dawn blind snake (Liotyphlops beui)
Leptotyphlopidae
Stejneger, 1892[17]
Slender blind snakes Texas blind snake (Leptotyphlops dulcis) Leptotyphlops dulcis.jpg
Typhlopidae
Merrem, 1820[21]
Blind snakes European blind snake (Typhlops vermicularis) Typhlops vermicularis.jpg

  Notes

  1. ^ a b Kumazawa, Yoshinori (2007). "Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations". Gene 388 (1-2): 19–26. DOI:10.1016/j.gene.2006.09.026. PMID 17118581. 
  2. ^ "Lizards & Snakes Alive!". American Museum of Natural History. http://www.amnh.org/exhibitions/lizards/snakes/world.php. Retrieved 2007-12-25. 
  3. ^ "Iguana Anatomy". http://www.greenigsociety.org/anatomy.htm. 
  4. ^ Morales, Alex. "Komodo Dragons, World's Largest Lizards, Have Virgin Births". Bloomberg Television. http://www.bloomberg.com/apps/news?pid=20601082&sid=apLYpeppu8ag&refer=canada. Retrieved 2008-03-28. 
  5. ^ a b Fry, B. G., N. Vidal, J. A. Norman, F. J. Vonk, H. Scheib, S. F. R. Ramjan, S. Kuruppu. 2006. Early evolution of the venom system in lizards and snakes. Nature 439:584-588.
  6. ^ Fry, B. G., N. Vidal, L. van der Weerd, E. Kochva, and C. Renjifo. 2009. Evolution and diversification of the toxicofera reptile venom system.Journal of Proteomics 72:127-136.
  7. ^ Kochva, E. 1987. The origin of snakes and evolution of the venom apparatus. Toxicon 25:65-106.
  8. ^ Fry, B.G. 2005. From genome to "Venome": Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Research 15:403-420.
  9. ^ Fry, B. G., H. Scheib, L. van der Weerd, B. Young, J. McNaughtan, S. F. R. Ramjan, N. Vidal. 2008. Evolution of an arsenal. Molecular & Cellular Proteomics 7:215-246.
  10. ^ Calvete, J. J., L. Sanz, Y. Angulo, B. Lomonte, and J. M. Gutierrez. 2009. Venoms, venomics, antivenomics. Febs Letters 583:1736-1743.
  11. ^ Barlow, A., C. E. Pook, R. A. Harrison, and W. Wuster. 2009. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society B-Biological Sciences 276:2443-2449.
  12. ^ "Snake-bites: appraisal of the global situation". Who.com. http://www.who.int/bloodproducts/publications/en/bulletin_1998_76(5)_515-524.pdf. Retrieved 2007-12-30. 
  13. ^ "First Aid Snake Bites". University of Maryland Medical Center. http://www.umm.edu/non_trauma/snake.htm. Retrieved 2007-12-30. 
  14. ^ "Pet boa constrictor chokes owner". BBC News. 2006-12-18. http://news.bbc.co.uk/2/hi/americas/6191305.stm. Retrieved 2007-12-30. 
  15. ^ "Komodo dragon kills boy, 8, in Indonesia". msnbc. http://www.msnbc.msn.com/id/19026658/. Retrieved 2007-12-30. 
  16. ^ a b Fry, B. et al. (February 2006). "Early evolution of the venom system in lizards and snakes" (PDF). Nature 439 (7076): 584–588. DOI:10.1038/nature04328. PMID 16292255. http://www.nature.com/nature/journal/v439/n7076/abs/nature04328.html. 
  17. ^ a b c d e f g Cogger(1991), p.23
  18. ^ "Aniliidae". Integrated Taxonomic Information System. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=209611. Retrieved 12 December 2007. 
  19. ^ "Anomochilidae". Integrated Taxonomic Information System. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=563894. Retrieved 13 December 2007. 
  20. ^ "Atractaspididae". Integrated Taxonomic Information System. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=563895. Retrieved 13 December 2007. 
  21. ^ "Typhlopidae". Integrated Taxonomic Information System. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=174338. Retrieved 13 December 2007. 

  References

  • Bebler, John L.; King, F. Wayne (1979). The Audubon Society Field Guide to Reptiles and Amphibians of North America. New York: Alfred A. Knopf. pp. 581. ISBN 0-394-50824-6. 
  • Capula, Massimo; Behler (1989). Simon & Schuster's Guide to Reptiles and Amphibians of the World. New York: Simon & Schuster. ISBN 0-671-69098-1. 
  • Cogger, Harold; Zweifel, Richard (1992). Reptiles & Amphibians. Sydney, Australia: Weldon Owen. ISBN 0-8317-2786-1. 
  • Conant, Roger; Collins, Joseph (1991). A Field Guide to Reptiles and Amphibians Eastern/Central North America. Boston, Massachusetts: Houghton Mifflin Company. ISBN 0-395-58389-6. 
  • Ditmars, Raymond L (1933). Reptiles of the World: The Crocodilians, Lizards, Snakes, Turtles and Tortoises of the Eastern and Western Hemispheres. New York: Macmillian. pp. 321. 
  • Evans SE. 2003. At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biological Reviews, Cambridge 78: 513–551. doi:10.1017/S1464793103006134
  • Evans SE. 2008. The skull of lizards and tuatara. In Biology of the Reptilia, Vol.20, Morphology H: the skull of Lepidosauria, Gans C, Gaunt A S, Adler K. (eds). Ithica, New York, Society for the study of Amphibians and Reptiles. pp1–344. Weblink to purchase
  • Evans SE, Jones MEH. 2010. The origin, early history and diversification of lepidosauromorph reptiles. In Bandyopadhyay S. (ed.), New Aspects of Mesozoic Biodiversity, 27 Lecture Notes in Earth Sciences 132, 27-44. doi:10.1007/978-3-642-10311-7_2
  • Freiberg, Dr. Marcos; Walls, Jerry (1984). The World of Venomous Animals. New Jersey: TFH Publications. ISBN 0-87666-567-9. 
  • Gibbons, J. Whitfield; Gibbons, Whit (1983). Their Blood Runs Cold: Adventures With Reptiles and Amphibians. Alabama: University of Alabama Press. pp. 164. ISBN 978-0-8173-0135-4. 
  • McDiarmid, RW; Campbell, JA; Touré, T (1999). Snake Species of the World: A Taxonomic and Geographic Reference. 1. Herpetologists' League. pp. 511. ISBN 1-893777-00-6. 
  • Mehrtens, John (1987). Living Snakes of the World in Color. New York: Sterling. ISBN 0-8069-6461-8. 
  • Rosenfeld, Arthur (1989). Exotic Pets. New York: Simon & Schuster. pp. 293. ISBN 067147654. 

  External links

   
               

 

todas as traduções do SQUAMATA


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

  • definition
  • synonym

   Publicidade ▼

Últimas investigações no dicionário :

6232 visitantes em linha

calculado em 0,063s

   Publicidade ▼

   Publicidade ▼